導數(shù)的概念形成與速度問題和切線問題密切相關!大家下去過后可以了解一些速度與切線的概念,這里不做細講。
首先我們來看一下函數(shù)在一點處的導數(shù)與導函數(shù)以及定義:
在了解完定義過后,我們接著往下看導數(shù)的計算。
導數(shù)的計算,主要以公式的推導敘述,推導的過程大家一定要細看,有不懂的可以留言提問。
冪函數(shù)的導數(shù)對于部分同學有些困難,冪函數(shù)求導會用到二項式定理,大家一定要對高中學習過的二項式有了解
給大家出幾道求導的題目,可以動手練習一下,答案可以打在留言區(qū),讓大家共享。
下節(jié)課我們講解正弦,余弦,正切函數(shù)的求導方法。
]]>分享興趣,傳播快樂,增長見聞,留下美好!親愛的您,這里是LearningYard新學苑。今天小編為大家?guī)砗脤W高數(shù)(三):函數(shù)的求導法則
Share interests, spread happiness, grow insights, and leave a good life! Dear you, this is the new Academy of LearningYard. Today Xiaobian brings you the good learning of high numbers (3): the law of differentiation of functions
導數(shù)的概念
一
1、當函數(shù)在某一點a的導數(shù)無窮大,則在a點不可導
導數(shù)存在和導數(shù)連續(xù)的區(qū)別:
①滿足條件不同
a、導數(shù)存在:只要存在左導數(shù)或者右導數(shù)就叫導數(shù)存在。
b、可導:左導數(shù)和右導數(shù)存在并且左導數(shù)和右導數(shù)相等才能叫可導。
②函數(shù)連續(xù)性不同
a、導數(shù)存在:導數(shù)存在的函數(shù)不一定連續(xù)。
b、可導:可導的函數(shù)一定連續(xù);連續(xù)的函數(shù)不一定可導,不連續(xù)的函數(shù)一定不可導。
③曲線形狀不同
a、導數(shù)存在:曲線是不連續(xù)的,存在尖點或斷點。
b、可導:可導的曲線形狀是光滑的,連續(xù)的。沒有尖點、斷點。
First, the derivative concept
1, when the derivative of the function at a point is infinite, it is not derivable at point a
2, derivable must be continuous, and the difference between the continuous and the derivative is not necessarily derivable:
1) the conditions are different
a, the derivative exists: as long as there is a left derivative or a right derivative, it is called the derivative existence. b. Derivable: The existence of the left and right derivatives and the equality of the left and right derivatives can be called derivable.
2) The function continuity is different
a、the derivative exists: the function in which the derivative exists is not necessarily continuous.
b. Derivable: the derivable function must be continuous; Continuous functions are not necessarily derivable, and discontinuous functions must not be derivable.
(3) The shape of the curve is different
a, the derivative exists: the curve is discontinuous, and there are sharp points or breakpoints.
b, conductive: the shape of the conductive curve is smooth and continuous. There are no sharp points, breakpoints.
求導法則
二
1、求導公式
推導 例:
2、反函數(shù)求導
反函數(shù)求導=原函數(shù)導數(shù)的倒數(shù)
3、復合函數(shù)求導
①主要思路:由外向內逐步求導
例:
補充:
Second, the law of differentiation
1, the derivative formula
2, the inverse function to derive the inverse function derivative = the reciprocal of the original function derivative
3, composite function derivation
(1) The main idea: from the outside to the inner step by step derivation
END
今天的分享就到這里了,如果您對文章有獨特的想法,歡迎給我們留言。
讓我們相約明天,祝您今天過得開心快樂!
That's it for today's sharing. If you have a unique idea about the article.please leave us a message.
Let us meet tomorrow I wish you a happy day today!
翻譯:谷歌翻譯
參考:《高等數(shù)學》第七版上冊 同濟大學數(shù)學系、百度
聲明:本文有LearningYard新學苑原創(chuàng),若有侵權請聯(lián)系刪除